
Programming Example

HTC021/V1.0

Technical Information

For the standard COFA tool, the maximum cross hole to main hole ratio is 2:1 and the maximum surface angle is 15°. Above these values, the cutting insert may not have enough clearance. With irregular surfaces, the RPM must be lowered but the feed rate is unaffected. Deburr more extreme contours by using the 30° blade with extra clearance relief.

Spring Information

The spring gives cutting force to the carbide blade and the COFA tool easily accommodates several spring sizes. For easier cutting materials such as aluminum, a softer "W" spring is recommended. For harder materials or alloys, a stiffer spring is recommended.

Cutting Data

			COFA-C 6/8/12 Carbide TiAIN	
Material	Hardness	Spring	IPR	SFM
	BHN	Index	mm/rev	MPM
Carbon Steels	100-250	H-Z	.006012	100-340
			.153	30-104
Free Machining Alloy	125-340	H-S	.006012	60-240
		S-Z	.153	18-73
High Alloy Steel	250-350	S-Z1	.00601	60-200
			.1525	18-60
Stainless Steel	140-250	S-Z2	.00601	40-175
			.1525	12-53
Grey Cast Iron	150-330	Н	.008016	50-330
		H-S	.24	15-100
Nodular Cast Iron	140-310	Н	.006012	50-300
		H-S	.153	15-91
Aluminum Alloys	30-180	W-H	.008014	80-600
			.235	24-183
Nickel-based Alloys	220-310	Z1-Z3	.00501	15-80
		Z2-Z3	.12525	5-24
Titanium Alloys		Z1-Z3	.00501	15-80
			.12525	5-24
Copper-Brass-Bronze	80-202	Н	.008016	80-600
		H-S	.24	24-183

NOTE: All listed cutting data are standard values only. The cutting values depend on the amount of slope of the uneven bore edge (i.e. high slope=low cutting value). The feed also depends on the sloping ratio. In case of hardto-machine materials or uneven bore edges, we recommend applying cutting speeds that are at the lower end of the range for uneven bore edges.

